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PROBABILITY

Probability models and axioms

A sample space € is the set of all
possible outcomes. The set’s elements must be mutually exclusive,
collectively exhaustive and at the right granularity.

An event is a subset of the sample space.
Probability is assigned to events.

A probability law P assigns
probabilities to events and satisfies the following axioms:

Nonnegativity P(A) >0 for all events A.
Normalization P(Q) =1.

(Countable) additivity For every sequence of events A1, Ag, ...

such that A;nA; =@: P (UAZ) = Z]P(AZ)

e P(g)=0.

e For any finite collection of disjoint events Ay, ..

P(G Ai) - 3 P(AY).
=1 =1

5 An,

o P(A)+P(A°) =1.

e P(A)<1.

e If Ac B, then P(A) < P(B).

e P(AUB)=P(A)+P(B)-P(AnB).

e P(AuB)<P(A)+P(B).
Example (Discrete uniform law) Assume €2 is finite and consists
of n equally likely elements. Also, assume that A c Q with k
elements. Then P(A) = %
Conditioning and Bayes’ rule

Given that event B has
occurred and that P(B) > 0, the probability that A occurs is

P(A|B) a P(AnB)
P(B)

Remark (Conditional probabilities properties) They are the same
as ordinary probabilities. Assuming P(B) > 0:

e P(A|B)>0.
o P(QB) =1
e P(B|B)=1.

o f AnC =g, P(AuC|B) =P(A|B) + P(C|B).
Proposition (Multiplication rule)
IP(Al ﬂAQﬁmﬁAn) = P(A1)~IP(A2|A1)~~IP(A”‘A1 ﬂAQﬂmﬂAn,l).

Theorem (Total probability theorem) Given a partition
{A1, Aa,...} of the sample space, meaning that U A; = Q and the
i

events are disjoint, and for every event B, we have

P(B) = Z]P(Ai)]P(B\Ai)~

Theorem (Bayes’ rule) Given a partition {A1, Aa,...} of the
sample space, meaning that L_)Ai =) and the events are disjoint,

7
and if P(A;) > 0 for all ¢, then for every event B, the conditional
probabilities P(A;|B) can be obtained from the conditional

probabilities P(B|A;) and the initial probabilities P(A;) as follows:

P(A;)P(B|A;)
P(A;|B) = ——————— .

i) = 5 P, P (BIA)
Independence

Two events are independent
if occurrence of one provides no information about the other. We
say that A and B are independent if

P(AnB)=P(A)P(B).
Equivalently, as long as IP(A) >0 and P(B) > 0,
P(B|A) =P(B) P(A|B) =P(A).
Remarks

e The definition of independence is symmetric with respect to
A and B.

e The product definition applies even if P(A) =0 or P(B) =0.

If A and B are independent, then A and B¢ are
independent. Similarly for A¢ and B, or for A¢ and B€.
We say that A and B are
independent conditioned on C, where P(C) > 0, if

P(An B|C) = P(A|C)P(B|C).

‘We say that
events Ay, As,..., Ay are independent if for every collection of
distinct indices 41,12, ...,4;, we have

Counting

This section deals with finite sets with uniform probability law. In
this case, to calculate P(A), we need to count the number of
elements in A and in Q.
Remark (Basic counting principle) For a selection that can be
done in r stages, with n; choices at each stage i, the number of
possible selections is nj - ng--ny.

The number of permutations
(orderings) of n different elements is

nl=1-2-3-n.

Given a set of n elements, the number
of subsets with exactly k elements is

n n!
(k) T Bl(n-k)

We are given an n—element set and
nonnegative integers ni,n2,...,n,, whose sum is equal to n. The
number of partitions of the set into r disjoint subsets, with the ith
subset containing exactly n; elements, is equal to

(")
Nlyeeey, Ny ni!ng!--ng!

Remark This is the same as counting how to assign n distinct
elements to r people, giving each person i exactly n; elements.

Discrete random variables
Probability mass function and expectation

A random variable X is a function
of the sample space Q into the real numbers (or R™). Its range can
be discrete or continuous.

The probability law
of a discrete random variable X is called its PMF. It is defined as
px(@) = P(X =2) = P ({we Q: X(w) = 2}).

Properties
px(z) >0, Va.

Zopx(z) =1

Example (Bernoulli random variable) A Bernoulli random
variable X with parameter 0 <p <1 (X ~ Ber(p)) takes the
following values:

xoJ1 wpp
0 w.p. 1-p.

An indicator random variable of an event (I4 =1 if A occurs) is an
example of a Bernoulli random variable.

Example (Discrete uniform random variable) A Discrete uniform
random variable X between a and b with a <b (X ~ Uni[a,b])
takes any of the values in {a,a +1,...,b} with probability b—iﬁ'
Example (Binomial random variable) A Binomial random
variable X with parameters n (natural number) and 0 <p <1

(X ~ Bin(n,p)) takes values in the set {0,1,...,n} with
probabilities px (i) = (?)pl(l -p)n i

It represents the number of successes in n independent trials where
each trial has a probability of success p. Therefore, it can also be
seen as the sum of n independent Bernoulli random variables, each
with parameter p.

Example (Geometric random variable) A Geometric random
variable X with parameter 0 < p <1 (X ~ Geo(p)) takes values in
the set {1,2,...} with probabilities px (i) = (1 -p)* 'p.

It represents the number of independent trials until (and including)
the first success, when the probability of success in each trial is p.

The
expectation of a discrete random variable is defined as

E[X] 2 Y apx (2).

assuming Y., |z|px (x) < oo.
Properties (Properties of expectation)
e If X >0 then E[X]>0.
o Ifa< X <bthen a<E[X]<b.
e If X =cthen E[X]=c.
Example Expected value of know r.v.
e If X ~Ber(p) then E[X] =p.
e If X =14 then E[X]=P(A).
o If X ~ Uni[a,b] then E[X] = 22
e If X ~Bin(n,p) then E[X] = np.

o If X ~ Geo(p) then E[X] = %.



Theorem (Expected value rule) Given a random variable X and a
function g : R - R, we construct the random variable Y = g(X).
Then

Yypy () =EB[Y]=E[g(X)] = g(z)px ().
Y x

Remark (PMF of Y = g(X)) The PMF of Y = g(X) is

py(y)= T px(z).
wig(2)=y

Remark In general g (E[X]) # E[g(X)]. They are equal if
g(z) =azx +b.
Variance, conditioning on an event, multiple r.v.

Given a random
variable X with p = E[X], its variance is a measure of the spread
of the random variable and is defined as

Var(X) =80 [(x- ,u)z] = (z- 1)’px (x).

ox =/ Var(X).
Properties (Properties of the variance)
Var(aX) = a2 Var(X), for all a € R.
Var(X +b) = Var(X), for all be R.
Var(aX +b) = a® Var(X).
Var(X) = E[X2] - (E[X])2.
Example (Variance of known r.v.)
If X ~ Ber(p), then Var(X) =p(1 - p).
If X ~ Uni[a,b], then Var(X) = {¢=e)(b-a+2)
e If X ~Bin(n,p), then Var(X) =np(1 -p).
If X ~ Geo(p), then Var(X) = 110;2?

Proposition (Conditional PMF and expectation, given an event)
Given the event A, with P(A) > 0, we have the following

o pxja(z) =P(X = z|A).
e If A is a subset of the range of X, then:
ﬁpx(l‘x ifzeA,

px|a(z) E Px|ixeay(z) =

R otherwise.
o Y.pxjalz) =1
o B[X|A] =X, zpx|a(z).
o E[g(X)|A] = E, 9(z)px|a ().

Proposition (Total expectation rule) Given a partition of disjoint
events Aq,..., A, such that 3, P(4;) =1, and P(A4;) >0,

E[X]=P(A1)E[X|A1]+ -+ P(An)E[X]|An].

When we condition a geometric random variable X on the event
X >n we have memorylessness, meaning that the “remaining time”
X —n, given that X > n, is also geometric with the same parameter.
Formally,
Px-n|x>n (1) =px (3).
The joint PMF of random variables

X1,Xo,...,Xn is
PX1,X5,....Xn (3317 ..

n)=P(X1=21,...,Xn =2n).

Properties (Properties of joint PMF)

o XY pxy,... Xn (%1, 20) = 1.
r1 T

o px, (1) =X T px,,... . x, (@1, T2,...,%n).
T2 T
® PXa,Xn (T2, -, %n) = L PX ), Xg,00, X (%1, %25+, @)
xy
If Z = g(X1,...,Xn),
where g : R"® - R, then pz(z) =P (9(X1,...,Xn) = 2).

Proposition (Expected value rule for multiple r.v.) Given

g:R™ >R,
E[g(X1,...,Xn)]= >

L1,y Ty

g(xlw~~awn)le,A..,Xn(wlv---75571)'

Properties (Linearity of expectations)
o E[aX +b]=aE[X]+b.
o E[X1+ -+ Xn]=E[X1]++E[Xn].

Conditioning on a random variable, independence

Given discrete random variables X,Y and y such that py (y) >0
we define
A PX,Y(Q% y)
px|y (zly) = —————

py ()
Proposition (Multiplication rule) Given jointly discrete random
variables X,Y’, and whenever the conditional probabilities are
defined,

px,v (z,9) = px (2)py|x (¥|z) = Py (¥)Px )Y (T]Y)-

Given discrete random
variables X,Y and y such that py (y) >0 we define

E[X|Y =y] = > zpxy (zly)-

Additionally we have
E[g(X)Y =y] =Y g(z)pxy (zly).
x

Theorem (Total probability and expectation theorems)
If py (y) > 0, then

px(z) = X py (W)px|y (=ly),
Yy
E[X] =) py (®)E[X]Y =y].
Yy

A
discrete random variable X and an event A are independent if
P(X =z and A) =px (x)P(A), for all x.

Two discrete
random variables X and Y are independent if
pxy (z,y) = px (z)py (y) for all z,y.
Remark (Independence of a collection of random variables) A
collection X1, Xs,..., X, of random variables are independent if

7~Tn) =Px; (xl)"’an («Tn)7 VZ1,...,%Tn.

DX, Xn (T1,- -

Remark (Independence and expectation) In general,
E[g(X,Y)]#g(E[X],E[Y]). An exception is for linear functions:
E[aX +bY ] =aE[X] +bE[Y].

Proposition (Expectation of product of independent r.v.) If X
and Y are discrete independent random variables,

E[XY]=E[X]E[Y].
Remark If X and Y are independent,
E[g(X)h(Y)] =E[g(X)]E[R(Y)].

Proposition (Variance of sum of independent random variables)
IF X and Y are discrete independent random variables,

Var(X +Y) = Var(X) + Var(Y).

Continuous random variables
PDF, Expectation, Variance, CDF

A probability
density function of a r.v. X is a non-negative real valued function
fx that satisfies the following

° 770 fx(z)dz = 1.

b
e P(a<X <b) =/ fx(x)dx for some random variable X.

A random variable X is
continuous if its probability law can be described by a PDF fx.

Remark Continuous random variables satisfy:
e For small § >0, P(a< X <a+6)~ fx(a)d.
e P(X=a)=0,VacR.

The
expectation of a continuous random variable is

E[X]2 [: ofx (z)de.

assuming [ |z|fx (z)dz.

Properties (Properties of expectation)
e If X >0 then E[X]>0.
e Ifa< X <bthena<E[X]<b.

o E[g()]= [ g@)fx(@)da.

e E[aX +b]=aE[X]+b.

Given a
continuous random variable X with p = E[X], its variance is

Var(X) =B[(X - 0?] = [~ (@~ w)?fx (2)da.

It has the same properties as the variance of a discrete random
variable.

Example (Uniform continuous random variable) A Uniform

continuous random variable X between a and b, with a < b,
(X ~ Uni(a,b)) has PDF

1 .
—, ifa<z<d
_Jb-a 1 )
Fx(@) {O, otherwise.
2
We have E[X] = ‘%’b and Var(X) = (b;;) .




Example (Exponential random variable) An Exponential random
variable X with parameter A >0 (X ~ Exzp())) has PDF

Ae ™% if >0,

0, otherwise.

fx(x)—{

We have E[X] = % and Var(X) = /\—12

The CDF
of a random variable X is Fx(z) = P(X < z).
In particular, for a continuous random variable, we have

Fx(z) = f Fx(2)dz,

fx(z) = dF;(iz(w)

Properties (Properties of CDF)
o If y >z, then Fx (y) > Fx ().

e lim Fx(xz)=0.
xr——00

o lim Fx(z)=1.
T—>00

A Normal random
variable X with mean p and variance o2 >0 (X ~ N (u,02)) has
PDF
o zez(e-m)?

Ifx(z) =

2mo?

We have E[X] =y and Var(X) = o2.
Remark (Standard Normal) The standard Normal is N'(0, 1).

Proposition (Linearity of Gaussians) Given X ~ N(u,0?), and if
a #0, then aX +b~ N (ap +b,a%0?).
Using this Y = X;“

is a standard gaussian.

Conditioning on an event, and multiple continuous r.v.

Given a continuous
random variable X and event A with P(A) > 0, we define the
conditional PDF as the function that satisfies

P(X ¢ B|A) = fB Fxia(@)dz.

Given a continuous
random variable X and an A c R, with P(A) > 0:

1
Ty A
_ ]p(A)fX(z)y TeA,
x) =
fX|XsA( ) {07 J,‘¢A.
Given a continuous random
variable X and an event A, with P(A) > 0:

E[X[A]= [~ fxja(e)da.

When we condition an exponential random variable X on the event
X >t we have memorylessness, meaning that the “remaining time”
X —t given that X >t is also geometric with the same parameter
ie.,

P(X-t>z|X >t) =P(X > ).

Theorem (Total probability and expectation theorems) Given a
partition of the space into disjoint events A1, Ag,..., Ay such that
Y;P(A;) =1 we have the following:

Fx(z) = P(A1)Fxja, (%) + -+ P(An) Fx|a, (),

fx(z) =P(A1)fx|a, (@) + -+ P(An) fx|4, (%),
E[X]=P(A1)E[X[|A1] + -+ P(Ap)E[X|AR].

A pair
(collection) of random variables is jointly continuous if there exists
a joint PDF fx y that describes them, that is, for every set B ¢ R™

P(x.V)eB) = [[ fxy(ey)dady.

Properties (Properties of joint PDFs)

o Ix(@)= ] fxv(@p)dy.

x
o Fxy(z,y)=P(X<z,Y<y)= [

—o0

y
|;j fx,v (u, v)dv] du.

92 Fx v (z,y)
o fxy (@)= —%%,—

Example (Uniform joint PDF on a set S) Let S ¢ R? with area
s> 0, then the random variable (X,Y") is uniform over S if it has
PDF

(z,y) €S,

1
Ixy(z,y) = {057 (2.1) ¢ 5.

Conditioning on a random variable, independence, Bayes’ rule
Given jointly continuous random variables X,Y and a value y such
that fy (y) > 0, we define the conditional PDF as

a fxy(z,y)
Ixy (zly) = T

Additionally we define P(X € AlY =y) [, fx|y (zly)dz.
Proposition (Multiplication rule) Given jointly continuous
random variables X, Y, whenever possible we have

Ix,v(®,y) = fx (@) fy)x (Wlz) = fv (@) Fxpy (2ly)-

Given jointly continuous
random variables X,Y’, and y such that fy (y) > 0, we define the
conditional expected value as

E[XIY =y)= [ afxy (aly)da.
Additionally we have

ElgCOW =] = [ g@)fxpy (sly)da.

Theorem (Total probability and total expectation theorems)
Ix@) = [~y @ixy aly)dy,

EIX]= [~ fy nE[X]Y = yldy.

Jointly continuous random variables
X,Y are independent if fx v (z,y) = fx(x)fy (y) for all z,y.

Proposition (Expectation of product of independent r.v.) If X
and Y are independent continuous random variables,

E[XY] = E[X]E[Y].

Remark If X and Y are independent,
E[g(X)h(Y)] =E[g(X)]E[R(Y)].

Proposition (Variance of sum of independent random variables)
If X and Y are independent continuous random variables,

Var(X +Y) = Var(X) + Var(Y).

Proposition (Bayes’ rule summary)

px (z)py|x (ylz)

e For X,Y discrete: px|y (zly) = oy ()

Ix (@) fy|x (ylx)

e For X,Y continuous: fx|y (zly) = )

px (=) fyx (ylz)

e For X discrete, Y continuous: px|y (zly) = o)

e For X continuous, Y discrete: fx|y (z]y) = %‘w
Derived distributions

Proposition (Discrete case) Given a discrete random variable X
and a function g, the r.v. Y = g(X) has PMF

py (y) = Z

z:g(x)=y

px ().

Remark (Linear function of discrete random variable) If
g(x) = az +b, then py (y) = px (L2).

Proposition (Linear function of continuous r.v.) Given a
continuous random variable X and Y = aX + b, with a # 0, we have

@) =i (20

lal a

If X ~N(p,02) and
Y =aX +b, with a # 0, then Y ~ N (ap +b,a%5?).

Example (General function of a continuous r.v.) If X is a
continuous random variable and g is any function, to obtain the
pdf of Y = g(X) we follow the two-step procedure:

1. Find the CDF of Y: Fy (y) =P(Y <y) =P (9(X) < y).

2. Differentilag:e the CDF of Y to obtain the PDF:
Fy(y) = T

Proposition (General formula for monotonic g) Let X be a
continuous random variable and g a function that is monotonic
wherever fx(z) > 0. The PDF of Y = g(X) is given by

Fr() = Fx (h(»)) ‘%(y)‘ .

where h = g~! in the interval where g is monotonic.



Sums of independent r.v., covariance and correlation
Proposition (Discrete case) Let X,Y be discrete independent
random variables and Z = X + Y, then the PMF of Z is
pz(2) = Y px (2)py (2 - ).
x

Proposition (Continuous case) Let X,Y be continuous
independent random variables and Z = X +Y, then the PDF of Z is
122 = [~ Ix@)fy (2 -2)da.

Proposition (Sum of independent normal r.v.) Let X ~ N (uz,02)
and Y ~ N (py,02) independent. Then
Z=X+Y ~ N(pax + py,02 +02).
We define the covariance of random
variables X,Y as
Cov(X,Y) 2E[(X -E[X]) (Y -E[Y])].
Properties (Properties of covariance)
e If X,Y are independent, then Cov(X,Y’) =0.
e Cov(X,X) = Var(X).
e Cov(aX +b,Y)=aCov(X,Y).
o Cov(X,Y +Z)=Cov(X,Y)+Cov(X,2Z).
e Cov(X,Y)=E[XY]-E[X]E[Y].
Proposition (Variance of a sum of r.v.)
Var(X1 + -+ Xp) = Var(X;) + Y Cov(X;, X;).
% i%]
We define the correlation

coefficient of random variables X,Y, with ox,o0y >0, as
o(X,Y) s Cov(X,Y).
oOxXoy
Properties (Properties of the correlation coefficient)
o —1<p<1.
e If X,Y are independent, then p =0.
|p| =1 if and only if X - E[X]=c(Y - E[Y]).
p(aX +b,Y) =sign(a)p(X,Y).

Conditional expectation and variance, sum of
random number of r.v.

Given
random variables X,Y the conditional expectation E[X|Y] is the
random variable that takes the value E[X|Y = y] whenever Y =y.
Theorem (Law of iterated expectations)

E[BEX[Y]] = E[X].

Given
random variables X,Y the conditional variance Var(X|Y) is the
random variable that takes the value Var(X|Y =y) whenever
Y =vy.

Theorem (Law of total variance)
Var(X) = E[Var(X[Y)] + Var (E[X|Y]) .
Proposition (Sum of a random number of independent r.v.)

Let N be a nonnegative integer random variable.
Let X, X1, X2,...,Xn beiid. random variables.
Let Y =%, X;. Then

E[Y]=E[N]E[X],
Var(Y) = E[N] Var(X) + (E[X])? Var(N).




